Minggu, 06 Februari 2022

A Student Proved Paradox-Free Time Travel Is Possible

In a new peer-reviewed paper, a senior honors undergraduate says he has mathematically proven the physical feasibility of a specific kind of time travel. The paper appears in Classical and Quantum Gravity.

University of Queensland student Germain Tobar, who the university's press release calls "prodigious," worked with UQ physics professor Fabio Costa on this paper. In "Reversible dynamics with closed time-like curves and freedom of choice," Tobar and Costa say they've found a middle ground in mathematics that solves a major logical paradox in one model of time travel. Let's dig in.

The math itself is complex, but it boils down to something fairly simple. Time travel discussion focuses on closed time-like curves (CTCs), something Albert Einstein first posited. And Tobar and Costa say that as long as just two pieces of an entire scenario within a CTC are still in "causal order" when you leave, the rest is subject to local free will.

"Our results show that CTCs are not only compatible with determinism and with the local 'free choice' of operations, but also with a rich and diverse range of scenarios and dynamical processes," their paper concludes.

Tidak ada komentar:

Posting Komentar